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Abstract
The study of animal–habitat interactions is of primary importance for the formula-
tion of conservation recommendations. Flying, gliding, and climbing animals have the 
ability to exploit their habitat in a three-dimensional way, and the vertical canopy 
structure in forests plays an essential role for habitat suitability. Forest bats as flying 
mammals may seasonally shift their microhabitat use due to differing energy demands 
or changing prey availability, but the patterns are not well understood. We investi-
gated three-dimensional and seasonal habitat use by insectivorous bats in a temper-
ate lowland old-growth forest, the Belovezhskaya Pushcha in Belarus. We acoustically 
sampled broadleaved and mixed coniferous plots in the forest interior and in gaps in 
three heights during two reproductive periods (pregnancy/lactation vs. postlacta-
tion). In canopy gaps, vertical stratification in bat activity was less pronounced than 
in the forest interior. Vertical activity patterns differed among species. The upper 
canopy levels were important foraging habitats for the open-space forager guild and 
for some edge-space foragers like the Barbastelle bat Barbastella barbastellus and the 
soprano pipistrelle Pipistrellus pygmaeus. Myotis species had highest activity levels 
near the ground in forest gaps. Moreover, we found species-dependent seasonal mi-
crohabitat shifts. Generally, all species and species groups considered except Myotis 
species showed higher activity levels during postlactation. Myotis species tended to-
ward higher activity in the forest interior during postlactation. P. pygmaeus switched 
from high activity levels in the upper canopy during pregnancy and lactation to high 
activity levels near the ground during postlactation. We conclude that a full compre-
hension of forest bat habitat use is only possible when height in canopy and seasonal 
patterns are considered.
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1  | INTRODUC TION

Forests are three-dimensionally structured ecosystems, where plant 
species and resources are heterogeneously distributed in time and 
space (Muscolo et al., 2014; Perry et al., 2018). Knowledge about 
how this three-dimensional heterogeneity impacts the spatio-
temporal behavior of forest animals is essential for the formulation 
of conservation measures (e.g., Alder et al., 2020; Charbonnier et al., 
2014; Ruczynski & Barton, 2020). The forest canopy as the upper 
layer of vegetation formed by tree crowns is a particularly important 
habitat and resource element used by vertebrate and nonvertebrate 
forest animals (Lowman et al., 2013; Nakamura et al., 2017).

A few decades ago, forest research was restricted to ground-
based methods due to technical limitations and inferences on spe-
cies interactions and population dynamics within the canopy were 
mainly deduced from ground observations (Lowman et al., 2013; 
Nakamura et al., 2017). The development of new technologies such 
as canopy access facilities (e.g., cranes) and remote sensing systems 
(e.g., drones) led to an increasing accessibility of forest canopies 
(Basset et al., 2003; Froidevaux, 2016; Jung et al., 2012; Lowman 
et al., 2012, 2013; Nakamura et al., 2017; Ozanne et al., 2021; 
Unterseher et al., 2007). Vertebrates using the forest canopy for 
moving, feeding, or resting actively choose their microhabitats by 
vertically switching between forest layers. This has been shown for 
birds (Acharya & Vijayan, 2017; Jayson & Mathew, 2003; Pearson, 
1971; Rajaonarivelo et al., 2020; Shaw et al., 2002; Walther, 2002), 
gliding squirrels (Krishna et al., 2016), or monkeys (Enstam & Isbell, 
2004; Li, 2007; Pinheiro et al., 2013) in different climatic regions. 
Bats as three-dimensionally moving organisms can exploit the forest 
canopy, the free space above the canopy and the interstrata free 
space. Studies on the role of tree crowns for bats originated in the 
tropics, where a number of studies revealed vertical stratification 
of various diversity metrics caused by species-inherent ecomorpho-
logical constraints and specializations in foraging behavior (Bernard, 
2001; Carvalho et al., 2013; Duya et al., 2017; Fraixedas Nunez et al., 
2019; Gregorin et al., 2017; Henry et al., 2004; Kalko & Handley, 
2001; Ramos Pereira et al., 2010; Rex et al., 2011; Silva et al., 2020; 
Tiago Marques et al., 2016). Such height stratification patterns were 
also found for arthropods across climatic regions (Ashton et al., 
2016; Basset et al., 2015; Oguri et al., 2014; Stork & Grimbacher, 
2006). In temperate regions worldwide, studies focusing on the 
three-dimensional space use in forest bats have not yet revealed 
consistent height patterns (United States: Hayes and Gruver (2000), 
Menzel et al. (2005), Kennedy et al. (2014), Australia: Adams et al. 
(2009), New Zealand: Scrimgeour et al. (2013)). In Europe, Froidevaux 
et al. (2014) did not detect any layer preferences (ground vs. canopy) 
within guilds. Plank et al. (2012) found species-dependent activ-
ity differences between strata and according to Collins and Jones 
(2009) and Mueller et al. (2013), species or species group activities 
and species assemblages differed between canopy layers.

In the forest interior, forest bat activity is more strongly con-
fined to certain heights than at forest edges such as forest tracks 
or water bodies (Adams et al., 2009; Tiago Marques et al., 2016). 

In the absence of vegetation clutter, the flight heights used by bats 
are not determined by physical constraints but are rather depending 
on species-dependent prey preferences. Indeed, bats’ choice of ad-
equate foraging habitats results from an interaction of prey species 
and their abundances (Andreas et al., 2012a; Ferreira et al., 2017; 
Salvarina et al., 2018), current energy requirements (Lucan & Radil, 
2010; Ruczynski et al., 2017; Russ et al., 2003), and local competi-
tive interactions (Andreas et al., 2012b; Roeleke et al., 2018; Vasko 
et al., 2020). Differing seasonal habitat requirements can thus be 
reflected in seasonal height use shifts, as Staton and Poulton (2012) 
and Plank et al. (2012) showed for temperate bats. Seasonal shifts in 
bat activity have been shown furthermore to occur between habi-
tats (Ferreira et al., 2017; Heim et al., 2016; Kelm et al., 2014; Lucan 
& Radil, 2010; Roeleke et al., 2018; Russ et al., 2003; Vasko et al., 
2020).

We acoustically sampled the vertical height use of a temperate 
forest bat assemblage in a European lowland old-growth forest. 
We compared the activity of guilds, the activity of dominant spe-
cies, and species community composition in two forest habitats for 
the ground, mid, and high canopy layer in the forest interior and in 
canopy gaps for the two time periods pregnancy/parturition and 
lactation/postlactation. This way, we were able to assess seasonal 
preferences in three dimensions both locally (vertically in the for-
est interior and adjacent gaps) and at a broader spatial scale (broad-
leaved vs. mixed coniferous forests).

Specifically, we hypothesized that

1.	 stratification of bat activity is more accentuated in the forest 
interior than in forest gaps

2.	 forest layers are differently used by guilds and species depending 
on their ecomorphology and prey preferences

3.	 forest layers are differently used by guilds and species depending 
on the reproductive season.

2  | MATERIAL AND METHODS

2.1 | Study area

The study was conducted in the “Belovezhskaya Pushcha” National 
Park (BPNP) in Western Belarus. The National Park is largely domi-
nated by temperate and hemiboreal woodlands (approximately 80% 
of the total 153,000  ha, Nikiforov and Bambiza (2008)) at eleva-
tions of 134–202 m a.s.l. and is part of the Belovezhskaya Pushcha/ 
Puszcza Białowieska (BP) forest complex which extends beyond the 
Polish–Belarusian border (Jaroszewicz et al., 2019). The climate is 
subcontinental, with a mean annual air temperature of 7.3°C and an 
average annual precipitation of 625 mm (period 1985–2015, Boczoń 
et al. (2018)). Mixed coniferous forests are the prevailing vegeta-
tion, reflecting the transitional character of BP between nemoral 
broadleaved and boreal coniferous forests (Nikiforov & Bambiza, 
2008). Pinus sylvestris L. (Scots pine) is the dominating tree species 
in more than half of the forest stands on the Belarusian side of BP 
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(Falinski, 1986; Nikiforov & Bambiza, 2008). Besides Alnus glutinosa 
L. (common alder) in swamp forests, English oak (Quercus robur L.), 
European hornbeam (Carpinus betulus L.), and small-leaved lime (Tilia 
cordata Mill.) form broadleaved mixed forests on sites not influenced 
by groundwater. In almost all forest stands in BP, Picea abies (L.) H. 
Karst. (Norway spruce) is present as an admixture (Falinski, 1986).

Our study plots were located within the “strict reserve” of the 
National Park, where management activities are prohibited on an 
area of 57,000  ha. To guarantee independent sampling of bats as 
flying mammals, all plots were located more than 7 km from each 
other. All plots were at least 1 km away from the nearest settlement 
to avoid anthropogenic influences and at least 300 m from external 
forest borders to minimize edge effects. Furthermore, plots were lo-
cated more than 1 km distant to water bodies or courses to reduce 
the influence of water on bat activity (Fukui et al., 2006; Grindal, 
1998; Salvarina et al., 2018; Vindigni et al., 2009).

Our study design covered two different habitat types for com-
parison. Four plots were located in mixed Pino-Quercetum stands 
(mixed coniferous forest), which represent the dominating forest 
community on the Belarusian side of BP (Falinski, 1986). These 
forest stands are dominated by P.  sylvestris with varying admix-
tures of P.  abies in the upper canopy and P.  abies and Q.  robur in 
the second tree layer. The understory was dominated by young 
Picea trees which create rather dense inner stands with respect to 
available flight space. Four plots were located in broadleaved Tilio-
Carpinetum stands, a mesotrophic forest community with frequently 
Q. robur and more rarely Tilia cordata or Acer platanoides dominating 
the uppermost canopy layer, and a rather dense subcanopy created 
mainly by C. betulus and P. abies. The forest interior was less dense 
compared to mixed coniferous stands due to lower stem densities. 
Each plot consisted of two subplots, with an average distance of 
154 ± 85 m from each other. One subplot was located in the forest 
interior, and the other in an adjacent forest gap. All gap plots had 
been created by fallen trees and were located within the forest ma-
trix, without connections to other open structures.

2.2 | Bat sampling

We used acoustic recording techniques to estimate bat activity. 
Devices automatically recording ultrasound were deployed at the 
plots (batcorder 3.0, EcoObs GmbH Nuremberg). We used the re-
cording mode “Auto-Timer” and the following recording settings: 
quality = 20, threshold = −27 dB, post-trigger = 400 ms, critical fre-
quency = 16 kHz. Recordings automatically ran from sunset until 1 h 
after sunrise. Following recommendations from Weller and Zabel 
(2002) and Britzke et al. (2013), omnidirectional ultrasonic micro-
phones were slightly inclined upward and the space surrounding 
them was void of vegetation clutter to minimize detection probabil-
ity bias.

In each subplot, batcorders were installed at three heights to col-
lect a three-dimensional acoustic image of bat activity along a verti-
cal gradient in the plot center. In the forest interior, batcorders were 

placed at the plot center (see 2.4 Stand structural data). In gaps, bat-
corders were placed in the subjective gap center. A rope-and-pulley 
system was used to suspend the batcorders. With a slingshot, we 
shot an auxiliary rope into a suitable branch fork. By means of this 
auxiliary rope, we pulled up the final string to which batcorders were 
attached at three heights. If no adequate tree was present in the gap 
center, we shot auxiliary ropes in two suitable trees on each side of 
the gap. This way, a rope was stretching from one side of the gap to 
the other side at canopy height. In the gap center, batcorders were 
attached to this rope using a vertically hanging line. We anchored 
the line in this central position with side ropes and tent pegs.

We investigated bat activity in three heights within each sub-
plot. Ground sampling (low stratum, space dominated by tree stems, 
and understory vegetation) was established at an average height of 
3 m (SD = 0.7 m, min = 1.6 m, max = 4.2 m). Midcanopy sampling 
(mid stratum, space of subcanopy trees) was conducted at 11  m 
(SD = 1.2 m, min = 9 m, max = 12.8 m) and high-canopy (high stra-
tum, space between subcanopy and canopy trees) sampling at 19 m 
(SD = 3.7 m, min = 13.1 m, max = 26.6 m). We tried to evenly spread 
the three batcorders over the height spectrum. However, we were 
not able to position the highest batcorder at the crown-top level of 
the tallest trees (Figures 1 and A1).

The batcorder array was set up simultaneously in a gap subplot 
and the neighboring forest interior subplot. For technical reasons, 
the number of recording nights per batcorder differed between 3 
and 12 nights (mean 8 recording nights, SD = 2.5). Sampling took 
place on 72 nights between 31 May and 4 September 2015. To catch 
seasonal effects on bat activity, we considered two time periods with 
similar sampling effort for each habitat and canopy structure (period 
I: 192 samples, period II: 196 samples; Table 1). However, while pe-
riod I included samples from four plots (accordingly eight subplots) 
per habitat, in period II only 3 plots (corresponding to six subplots) 
per habitat were sampled (Table 1). Due to technical problems, the 
highest batcorder in subplot E2 in broadleaved gaps was not work-
ing in period I; however, all synchronously recorded sequences in 
the other heights were included in the analyses, since the models 
used allow for differing sample sizes. Period I until July 3rd included 
gestation, parturition, and lactation of the offspring, while period II 
encompassed weaning of the young and the beginning of their inde-
pendent flights (Table A1). Temperature was measured internally in 
each batcorder and stored every 15 min (Figure A2). On ten nights, 
precipitation events of low impact took place (0.3–5.5 mm per night, 
measured between 18:00 and 6:00). All precipitation nights were 
included in the analyses, since exploratory analyses did not show 
any influence of these rare and low-intensity events on bat activity. 
Every height stratum in each habitat and canopy structure type was 
sampled between 29 and 37 nights during our field campaign.

2.3 | Acoustic data analysis

We collected acoustic bat calls and used these recordings to iden-
tify bat species. The software batIdent (EcoOb GmbH) automatically 
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identifies species and assigns identification probabilities. López-
Baucells et al. (2019) found that a combination of automatic and 
manual methods is effective in identifying bat calls. Hence, we 
used a combination of automatic bat call identification and manual 
postvalidation of these assignments using the software bcAnalyze2 
(EcoOb GmbH). Parameters and literature used for manual species 
identification are given in Erasmy et al. (2021). Bat calls not identi-
fied to species were combined into sonotypes. Recently, 16 bat spe-
cies have been described for the Belarusian side of BP (Dietz et al., 
2018). We used the pipistrellus sonotype for calls from unidentified 
P. pipistrellus and P. pygmaeus, myotis sonotype for unidentified calls 
from M. alcathoe, M. brandtii, and M. daubentonii, and nyctaloid so-
notype for unidentified calls from E. nilssonii, E. serotinus, N. noctula, 
N. leisleri, and V. murinus. A few calls were attributed to Plecotus spec. 
These calls most probably refer to Plecotus auritus, since P. austria-
cus has only rarely been recorded in BP (Sachanowicz et al., 2006). 

We performed a first set of statistical analyses on bat guild level 
and used the guild attribution of bat species following Erasmy et al. 
(2021) and Mueller et al. (2012). Edge-space foragers (ESF) included 
B. barbastellus, P. pipistrellus, P. pygmaeus, M. brandtii, M. daubento-
nii, M. alcathoe and not further specified Myotis spec., narrow-space 
foragers (NSF) comprised Plecotus auritus and M. nattereri, and open-
space foragers (OSF) P.  nathusii, N.  leisleri, N.  noctula, E.  nilssonii, 
E. serotinus, V. murinus, and all not further specified nyctaloid calls.

When analyzing bat recordings, we cannot distinguish between 
one individual recorded several times and several individuals re-
corded once. For this reason, Hayes (1997) and Kalcounis et al. 
(1999) proposed the use of an activity index instead of the number 
of recorded sequences as a method to take account of this issue. We 
used the number of 1-minute intervals with bat calls per night as an 
activity index [see Mueller et al. (2012) for a similar methodology 
and Erasmy et al. (2021) for a detailed description of this index]. This 
index evens out the effects of very high activity levels produced by 
species hunting in front of the microphone or by species with inter-
call intervals exceeding the post-trigger time (e.g., N. noctula).

Individual bat species differ in echolocation call intensities. This 
induces varying interspecies detection probabilities in the same hab-
itat and under identical weather conditions (Britzke et al., 2013). We 
therefore refrained from comparing activity patterns between guilds 
or species. Detection probabilities within species vary with vegeta-
tion clutter and weather conditions (Bender et al., 2015; Britzke et al., 
2013; Gorresen et al., 2008; Yates & Muzika, 2006). All batcorders in 
the forest interior were surrounded by vegetation-free space to cre-
ate similar recording situations and to minimize attenuation effects 
on bat calls through leaves and branches. We sampled the same hab-
itat type at multiple plots with differing vegetation structures sur-
rounding our batcorders. Since we were interested in habitat effects 
on bat activity, we are confident that these differing forest structural 
patterns from within the same habitat are suited to account for de-
tection probability differences due to vegetation clutter.

TA B L E  1   Fitted effects for total bat activity from a generalized 
linear mixed model with negative-binomial distribution assumed 
(n = 388)

Predictors IRR ± SE Stat. p

habitat [mixed coniferous] 0.35 ± 0.15 −2.42 .015

structure [gap] 2.09 ± 0.93 1.66 .098

height [mid] 0.55 ± 0.10 −3.25 .001

height [high] 0.34 ± 0.07 −5.39 <.001

mean night-time temperature 1.11 ± 0.03 4.29 <.001

structure [gap] * height [mid] 2.18 ± 0.53 3.22 .001

structure [gap] * height [high] 5.40 ± 1.39 6.52 <.001

Note: Random effects: subplot = 16 levels, date = 72 levels. 
IRR = incidence rate ratio, SE = standard error. Habitat fitted against 
broadleaved, canopy structure “gap” against the forest interior, and 
heights against the ground layer.
Significance threshold p < .05 in bold.

F I G U R E  1   Density function of tree 
height profiles in individual subplots (light 
gray, n = 4) and averaged over all plots 
(thick green line). Bars show the mean 
nighttime activity (± standard error) in 
minute-intervals/night for total bat guild 
plotted at the mean batcorder heights. 
Significant p-values of post hoc Tukey 
tests adjusted for multiple comparisons 
for the three height levels for both 
habitats combined from the GLMM fitting 
total bat activity
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Our batcorder array sampling synchronously at three heights 
possessed a pitfall: Since every microphone was recording on a sin-
gle device, high-intensity bat calls were likely to reach the neigh-
boring batcorder microphone and thus trigger the same activity 
recording in adjacent batcorders. We therefore manually checked all 
recordings, identified calls with the same timestamp from the same 
species/sonotype at neighboring batcorders, and assigned them to 
the batcorder with the strongest signal (Tiago Marques et al., 2016).

2.4 | Stand structural data

In gaps, we estimated gap area following Runkle (1982) by determin-
ing the edge of crowns in eight directions from the gap center. Gap 
sizes ranged from 56 to 265 m2, with an average gap size in broad-
leaved plots of 78 ± 23 m2 and an average gap size of 156 ± 77 m2 in 
mixed coniferous (Figure 2).

Plots in the forest interior were established on an area of 
1000 m2 (17.8 m radius around the batcorder as the plot center). We 
measured the height of 12–18 trees per plot and used the nonlin-
ear regression equation reported by Petterson (1955) to predict the 
height of all trees not measured. These height measures were used 
for depicting the plot height profiles of trees within the plot (forest 
interior subplots) or surrounding the gap (forest gap subplots) for the 
two habitat types considered (Figure 1).

2.5 | Statistical analyses

All statistical analyses were performed within the R 4.0.3 software 
environment (R Development Core Team, 2019). To test for the 

influence of structural and seasonal effects on bat activity, separate 
models were fitted for total bat activity, for the activity of each bat 
guild (OSF, ESF, and NSF) and of each of the dominant species within 
each guild with the 1-min activity index as a response variable. To 
disentangle species-dependent activity differences within the ESF 
guild, the activities of the main ESF species (Barbastelle bat, soprano 
pipistrelle, and Myotis spec.) were separately fitted. Myotis brandtii 
(7% of ESF activity) and not further identified Myotis spec. (20% of 
ESF activity) were first analyzed in separate analyses. The patterns 
identified were qualitatively identical, and their activity data were 
jointly analyzed as Myotis spec. to increase sample size. We fitted 
linear mixed models using the package glmmTMB (Brooks et al., 
2017) and validated model assumptions with the DHARMa package 
(Hartig, 2020). We accounted for seasonal variations in bat activity 
by monitoring throughout the summer and by integrating Julian date 
as a random factor (n = 72, total bat activity model) or two recording 
periods corresponding to pregnancy/lactation and postlactation pe-
riod as fixed effect into our models (all other models; Hayes, 1997; 
Skalak et al., 2012; Vasko et al., 2020). Subplot (n = 16) was added 
as a random factor to account for subplot-dependent variation not 
captured by the predictors used. A set of candidate models includ-
ing all two-way interactions between height, canopy openness (gap 
vs. forest interior), season (pregnancy/lactation vs. postlactation), 
and forest habitat (broadleaved vs. mixed coniferous) were fitted for 
each guild/species with assumed negative-binomial distributions. 
Mean nighttime temperature was added as a simple predictor, since 
several studies identified temperature as an important predictor 
both for bat and insect activity (e.g., Dajoz, 2000; Froidevaux et al., 
2021; Mueller et al., 2012; Wolbert et al., 2014). Post hoc testing 
for effects with more than two levels was done using Tukey’s hon-
estly significant difference test with a correction factor for multiple 
comparisons using the pairs function within the emmeans package 
(Lenth, 2020). The best fitting and most parsimonious model from 
this candidate set was identified using Akaike’s information crite-
rion adapted for small sample sizes (AICc) and chosen within AICc 
values below 2 (Brewer et al., 2016; Burnham & Anderson, 2004). 
All candidate models including their differences in AICc values are 
shown in Table A2. Moreover, we calculated marginal R2-values 
for the best fitting model using the Nakagawa equation (Table A2; 
Nakagawa and Schielzeth (2013), Lüdecke et al. (2021)). The best 
model is presented using restricted maximum likelihood (REML). 
Predictions used for plotting were calculated using the emmeans 
package (Lenth, 2020).

We applied nonmetric multidimensional scaling based on the 
Bray–Curtis similarity metric on species activity data to describe 
species assemblages (function metaMDS from the R package ‘vegan’, 
Oksanen et al. (2020). This function was applied to the activity 
data of all species/species groups present with more than 20 min-
intervals in the field campaign. V. murinus, Plecotus spec., M. alcathoe, 
M. dasycneme, and E. serotinus were excluded from this multivariate 
analysis due to their rare observation.

F I G U R E  2   (a) and (b) Projected gap areas of the coniferous 
(n = 4) and broadleaved (n = 4) forest sites in a projected coordinate 
system with 0 as the plot center where the batcorder was placed 
and gap dimensions showing the extent of each gap site in 
differently colored shades
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3  | RESULTS

3.1 | General patterns of bat activity

During 72 measuring nights, we recorded a total of 4316 bat call 
sequences (transformed into 2507 min-intervals per night). During 
90 of the 388 batcorder sessions, no bat calls were recorded. The 
recordings were assigned to the three guilds OSF, ESF, and NSF, with 
72% of the total activity belonging to ESF species, 24% to OSF and 
4% to NSF species. 64.5% of the activity data could be assigned to 
one of the 13 species identified, and the remaining sequences were 
attributed to species groups or sonotypes (see Section 2.3). 73% 
of the total activity observed in the study was recorded in broad-
leaved forests and 27% in mixed coniferous forests. About a quar-
ter of total activity (27%) was observed in the forest interior and 
73% in gaps. Bat total activity was evenly distributed over all three 
heights (high: 37%, mid: 29%, ground: 33%; Table A3 summarizes 
the raw data).

Total bat activity revealed opposing height patterns between 
forest gaps and the forest interior. In gaps, the highest activity was 
recorded in the upper canopy, and activity levels were lower with 

decreasing heights (Table 1). In the forest interior, however, the high-
est activity levels were recorded at the ground, with lower activity 
levels higher in the canopy (Table 1; Figure 1).

None of the species identified was recorded exclusively in either 
habitat, canopy structure, or height. However, differences in the 
proportional activity spent in each microhabitat became evident 
on species level (Figure 3). N. noctula was detected proportionally 
more often in gaps (81% of the total N. noctula activity) and in the 
upper canopy (81%) in mixed coniferous habitats (74%; Figure 3). 
P. nathusii bats spent almost their total activity in gaps (88%) and 
in the upper canopy (85%) in broadleaved forests (85%; Figure 3). 
B. barbastellus was equally active in broadleaved and mixed conifer-
ous habitats but spent more time in gaps (79% of activity) with half 
of its activity at the midcanopy layer (50%; Figure 3). P. pygmaeus 
bats generally spent most of their activity in gaps (67%) distributed 
equally over all three heights (Figure 3). In the forest interior, they 
were most active at the ground (71% activity spent; Figure 3). 94% 
of their total activity was spent in broadleaved forests. P. pipistrellus 
showed a proportional time activity pattern similar to P. pygmaeus 
(Figure 3). Myotis spec. spent most of their activity in broadleaved 
forests (91%) and were detected slightly more often in forest gaps 

F I G U R E  3   Proportional species activity spent in the habitat structures considered relative to the total activity of this species in minute-
intervals/night for dominant species. Nnoc = Nyctalus noctula, Enil = Eptesicus nilssonii, Pnat = Pipistrellus nathusii, Bbar = Barbastella 
barbastellus, Ppyg = Pipistrellus pygmaeus, Ppip = P. pipistrellus, Myo = Myotis. spec. (all Myotis spec. except M. nattereri), Mnat = M. nattereri
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(67%) and at the ground (46%; Figure 3). M. nattereri foraged in both 
habitat types, especially at the ground level (76%) and in forest gaps 
(68%; Figure 3).

3.2 | Guild-dependent activity stratification

Calls belonging to OSFs were recorded in 36% of sample nights. The 
best model fitting OSF activity revealed a differing height activ-
ity pattern between canopy gaps and the forest interior (Table 2): 
In gaps, OSFs were significantly more active in the upper canopy 
stratum, whereas their predicted activity levels for midcanopy 
heights and the ground were negligible (Figure 4). In the forest in-
terior, however, both mid- and high-canopy heights revealed signifi-
cantly higher OSF activity levels compared to the ground batcorder 
(Figure 4). OSFs were equally active in broadleaved and mixed conif-
erous forests, and temperature was significantly and positively in-
fluencing OSF activity levels (Table 2). Most calls from the OSF guild 
were unidentified nyctaloid calls (60% of all OSF calls). E. nilssonii and 
P.  nathusii accounted for 12% and 11%, respectively, of OSF calls. 
Species models for this guild were not fitted due to a low number of 
observations for single species.

ESFs were active during 68% of all sample nights. The most 
parsimonious model showed a significantly differing height pat-
tern between gaps and the forest interior (Table 2): In gaps, ESFs 
were equally active over the three heights considered (Table 2). In 
the forest interior, however, ESFs were most active at the ground 
(estimated marginal mean (EMM) activity from the model: 1.8 min-
intervals/night; Figure 4). Generally, broadleaved forests were sig-
nificantly preferred by ESF bats (Table 2). Activity within this guild 
significantly increased with higher mean nighttime temperatures 
(Table 2). Height use in Barbastelle bats (23% of ESF activity) dif-
fered depending on the canopy structure. Barbastelle bats’ activity 
in canopy gaps was highest at mid heights (Figure 4). In the forest in-
terior, Barbastelle bats were significantly more active at the ground 
and at mid heights compared to the highest layer. Barbastelle bats 
did not prefer any of the two habitat types, broadleaved or mixed 
coniferous (Table 2). In both habitat types, they were significantly 
more often recorded in gaps (Table 2). Temperature was not influ-
encing Barbastelle activity (Table 2). Soprano pipistrelles made up 
33% of the ESF activity. They showed an overall activity pattern sim-
ilar to the one described for the ESF guild as a whole. The best fitting 
model showed a differing height activity pattern between gaps and 
the forest interior (Table 2). Soprano pipistrelles used the whole ver-
tical canopy spectrum in canopy gaps, with significant higher activity 
levels in the highest layer (Figure 4). In the forest interior, however, 
their activity was restricted to the ground, with significant lower ac-
tivity levels recorded both for the mid and high heights (Figure 4). 
Soprano pipistrelles preferred hunting in broadleaved forests; their 
activity levels in mixed coniferous forests were negligible (EMMs 
0.056  ±  0.02  min-intervals/night; Table 2; Figure 4). Mean night-
time temperatures had a positive influence on soprano pipistrelles’ 

activity levels (Table 2). Myotis species showed equal activity lev-
els in canopy gaps and in the forest interior and they significantly 
preferred hunting in broadleaved forests (Table 2). Considering 
height segregation, Myotis species were most active at the ground 
(Figure 4). Myotis activity was increasing with increasing nighttime 
temperature (Table 2).

NSF bats were recorded in 18% of recording nights. They were 
significantly more active at the ground compared to mid- and high-
canopy layers and did not show any preference for a certain forest 
type (Figure 4). NSF activity levels in canopy gaps were higher than in 
the forest interior and were not influenced by mean nighttime tem-
peratures (Table 2). NSFs were dominated by Myotis nattereri, with 
89% of all NSF call sequences from this species.

A clear pattern evident from the nonmetric multidimensional 
scaling was the species segregation between broadleaved and 
mixed coniferous plots, which mainly spread along the first NMDS 
axis explaining the greatest variance (Figure 5a; stress values of 
0.14 with k = 3 dimensions and a maximum of 500 permutations 
starting from the previous best solution). The resulting linear fit (R2) 
was 0.883. Nyctaloids were associated mainly with mixed conifer-
ous plots, while Myotis and Pipistrellus species were more closely 
linked to broadleaved plots. The NMDS plot did not show a seg-
regation between canopy structures (Figure 5b). Canopy height 
was depicted as a gradient in Figure 5c using a contour plot with 
isolines representing identical height levels. A clear transition from 
N. noctula and E. nilssonii over the nyctaloids (active at the highest 
canopy) to M. brandtii and Myotis spec. (most active at the ground) 
became apparent. Barbastelle bats, Pipistrelle bats, and Natterer’s 
bats were occupying intermediate height positions in ordination 
space (Figure 5c).

3.3 | Seasonal activity pattern

OSF species showed higher activity levels in the second period 
considered except for the highest canopy layer. Here, activity lev-
els did not differ between periods (canopy gaps) or were higher 
in period I (forest interior; Figure 6). The ESF guild showed a ten-
dency toward higher activity levels in period II with a significant 
increase only in the ground layer (Figure 6). For ESF species, we 
considered the dominating species separately. Barbastelle bats 
showed a tendency toward a higher activity in period II with no 
differences between height layers or canopy structures (Figure 6). 
Soprano pipistrelles showed activity increases in the second pe-
riod for mid- and low-canopy layers (Figure 6). Myotis species were 
the only group to show significantly higher activity levels in the 
first period considered, for all height levels in canopy gaps and 
for the highest canopy layer in the forest interior (Figure 6). NSF 
species revealed seasonal activity shifts depending on the canopy 
structure. Activity was significantly higher in period II in the for-
est interior but did not show seasonal variations in canopy gaps 
(Figure 6).
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F I G U R E  4   Estimated marginal means 
from the GLMMs for bat guild and species 
activity with 95% confidence levels as 
error bars. Raw activity data are plotted 
as transparent points in the background. 
For OSFs, the highest data point 
(69 min-intervals/night) was excluded 
from the plot for a better visualization. 
Significances of contrasts were corrected 
using Tukey’s post hoc test for multiple 
comparisons. OSF: open-space foragers, 
NSF: narrow-space forager, ESF: edge-
space forager, Myo: Myotis spec. (Myotis 
brandtii and undefined Myotis spec. 
combined), Bbar: B. barbastellus, Ppyg: 
P. pygmaeus. Colored bars indicate the 
three batcorder heights low (blue), mid 
(orange), and high (rose)
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F I G U R E  5   NMDS plots showing 2 of 3 dimensions for (a) habitat, (b) canopy structure, and (c) height levels depicted as isolines 
(levels 1–3). Bbar = Barbastella barbastellus, Enil = Eptesicus nilssonii, Mbra = Myotis brandtii, Mdau = M. daubentonii, Mnat = M. nattereri, 
Pip = Pipistrellus spec., Ppip = P. pipistrellus, Ppyg = P. pygmaeus, Nlei = Nyctalus leisleri, Nnoc = N. noctula
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4  | DISCUSSION

In studies dealing with the vertical stratification of temperate bat 
communities, sampled woodlands differ in structure and tree spe-
cies, and have led to ambiguous or contrasting results even in 
Europe under similar climatic conditions and with comparable bat 
species assemblages (Froidevaux et al., 2014; Mueller et al., 2013; 
Plank et al., 2012). In accordance with our hypotheses, our study 
demonstrates differential guild- and species-dependent height use 
by insectivorous bats in a lowland temperate old-growth forest. 
We show that restricting acoustic bat sampling to the ground layer 
leads to a strong bias in most of the species’ activities and to wrong 
conclusions considering their habitat needs. Moreover, we identi-
fied a generally higher activity during the postlactation period for 
all species groups except Myotis spec. and Myotis nattereri and found 
species-specific seasonal activity differences in height and canopy 
structure use.

Acoustic surveys have shortcomings that need to be addressed. 
We synchronously sampled canopy gaps largely void of vegetation 
and the forest interior, where vegetation clutter creates a com-
pletely different habitat type. This induces differences in detection 
probability of bat calls within the same species. However, we paid 
attention to place batcorders in a way that their omnidirectional ul-
trasonic microphones were completely surrounded by free space on 
a hypothetical sphere of 10 m diameter with the microphone at its 
center. This is important since Yates and Muzika (2006) and Bender 
et al. (2015) found vegetation clutter to be more important than de-
tection probability for bat occupancy. We are therefore confident 
that differences in detection probability are only a minor factor in-
fluencing our results.

As expected, vertical stratification in bat activity was most 
pronounced in the forest interior. In forest gaps, the absence of 

physical constraints such as vegetation clutter caused a vertically 
more uniform height use pattern. Our findings corroborate studies 
from Adams et al. (2009) and Tiago Marques et al. (2016) who found 
stronger stratification in bat activity in the forest interior compared 
to forest edges. This edge-interior gradient in vertical height stratifi-
cation was also found for saproxylic beetles (Vodka & Cizek, 2013). 
Indeed, bat activity in the forest interior is mainly determined by the 
interaction of habitat accessibility and prey availability, whereas in 
open spaces such as forest gaps prey availability is the major factor 
driving bat activity (Adams et al., 2009; Tiago Marques et al., 2016). 
In contrast to Adams et al. (2009) who found generally higher ac-
tivity levels in the subcanopy and canopy of the forest interior, we 
recorded guild- and species-mediated activity patterns. Our study 
further indicates habitat-dependent differences in activity levels, 
which highlights the role of plant species assemblages for the iden-
tification of animal–habitat relationships. This is in line with a study 
by Adams and Matthews (2019) on forest birds, where the influence 
of plant species on bird assemblages was stronger than the influence 
of vegetation structure. Penone et al. (2019) found that forests with 
a higher proportion of oak trees were more species-rich considering 
forest bats than forests with a high proportion of coniferous trees. 
These studies show that plant species composition can integrate 
aspects of structural vegetation features, potential prey availability, 
and roosting opportunities. Therefore, plant species composition 
should be considered alongside structural vegetation heterogeneity 
when studying bat–habitat interactions.

Our results confirm that the free space above the forest can-
opy is used by OSF species (Adams et al., 2009; Kalcounis et al., 
1999; Mueller et al., 2012, 2013). This habitat is especially ex-
ploited by large nyctaloids independent of the canopy structure or 
habitat type below them (Erasmy et al., 2021; Fukui et al., 2011). 
Free space within forest gaps, which is restricted in size and differs 

F I G U R E  6   Seasonal mean nighttime 
activity changes in bat guilds and 
dominating ESF species with error bars 
indicating standard errors. Significant 
effects were fitted in GLMMs with 
negative-binomial distributions and 
corrected for multiple comparisons using 
Tukey’s post hoc test
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in microclimatic conditions from the aerosphere above the canopy, 
may represent adequate foraging habitats for smaller nyctaloids 
like E. nilssonii or P. nathusii diving into them especially at high and 
mid heights.

Species from the ESF group clearly differed in their vertical height 
use concurrent with results from Plank et al. (2012) and Mueller 
et al. (2013), while Adams et al. (2009) did not detect profound dif-
ferences in stratification pattern between ESF species. This finding 
shows the limitations of the guild concept masking species-specific 
habitat preferences. Barbastelle bats preferred the upper layers in 
the canopy gaps. Gap edge structures along tree crowns and the free 
space in gaps at mid and high heights probably offered highly prof-
itable occurrences in lepidopteran prey (Rydell et al., 1996; Sierro & 
Arlettaz, 1997). Burford et al. (1999) and Carr et al. (2020), however, 
found moth species richness, occurrence, and abundance to be posi-
tively related to vegetation clutter, but Barbastelle bats—as large and 
rather fast flying ESFs—are precluded from cluttered vegetation. In 
the forest interior, their activity was four times lower compared to 
canopy gaps and restricted to the lower two layers where limited 
hunting possibilities were available. P.  pygmaeus was virtually ab-
sent from mixed coniferous habitats, and conclusions on their height 
use were thus deduced from their activity recorded in broadleaved 
forests. In the forest interior, soprano pipistrelles were mainly ac-
tive near the ground with comparable activity levels at gap ground 
levels. Since these bats are known to forage within the vegetation, 
we think that this forest layer offered the highest amount of their 
preferred dipteran prey (Bartonicka et al., 2008). In gaps, these bats 
were able to fully use the edge and open gap space over the whole 
vertical height spectrum, with a preference for the tree crowns as 
highly lucrative microhabitat. We consider the Myotis spec. group as 
consisting mostly of Myotis brandtii (Dietz et al., 2018; Dombrovski 
et al., 2017; Erasmy et al., 2021; Rachwald et al., 2001, 2021). 
Brandt’s bats were generally confined to the lowest layer with the 
highest activity levels in broadleaved gaps. Near the ground, their 
activity levels in gaps were nearly twice the activity levels in the 
forest interior. Their diet consists to a large extent of lepidopterans 
(Vesterinen et al., 2018), but dipterans and spiders, an indication for 
their gleaning foraging mode, have also been identified as main prey 
items (Taake, 1992). Their predominant activity at low heights in the 
absence of vegetation clutter in gaps may be mainly mediated by 
prey availability.

A similar confinement to the ground layer in gaps was found for 
the NSF guild, namely M. nattereri. In contrast to M. brandtii, how-
ever, M. nattereri also hunted in mixed coniferous stands. These re-
sults contrast findings by Smith and Racey (2008) and Erasmy et al. 
(2021) who identified a strong preference for broadleaved forests 
for this species, but are in accordance with Siemers et al. (1999) 
who found Natterer’s bats hunting indifferently in different habitat 
types. This contradiction might be caused by ephemeral accumula-
tions of suitable prey in the coniferous stands. Gleaning is the main 
foraging strategy of Natterer’s bats (Swift & Racey, 2002). They are 
able to hunt close to vegetation and to very efficiently localize si-
lent prey sitting on leaves and branches (Arlettaz, 1996; Siemers & 

Schnitzler, 2000; Siemers & Swift, 2006). We therefore think that 
Natterer’s bats in our study used low vegetation structures such as 
regenerating trees and low shrub vegetation in the forest interior to 
hunt on largely immobile prey (Siemers & Swift, 2006).

Seasonal activity patterns in temperate bats are shaped by two 
different mechanisms. The first mechanism is directly linked to the 
bats’ lifecycles. Energy demands especially of reproductive females 
change from pregnancy over lactation to weaning with a peak during 
lactation (Shiel et al., 1999). Newly volant young generally lead to an 
increase in the number of hunting bats in July and August (Russ et al., 
2003). In early autumn, mating behavior influences nightly spatial 
and temporal activity patterns, while the need to accumulate fat re-
serves for hibernation increases the energy demands (Ciechanowski 
et al., 2010). Secondly, arthropod lifecycles and their temperature 
dependency cause variations in prey occurrences and abundances 
and this way influence bat seasonal activity (Höhne & Dietz, 2012; 
Mueller et al., 2012; Roeleke et al., 2018; Salvarina et al., 2018; 
Wang et al., 2010).

In concurrence with our results, Shiel et al. (1999), Russ 
et al. (2003), Bartonicka et al. (2008), Ciechanowski et al. (2010) and 
Lucan and Radil (2010) also found higher activity levels during the 
postlactation period. In our study, soprano pipistrelles and Brandt’s 
bats were the only bats with seasonal height or canopy use shifts. 
P. pygmaeus increased their activity during postlactation especially 
near the ground. Bartonicka et al. (2008) found the occurrence of 
certain prey groups (Neuroptera and Simulidae) to positively in-
fluence soprano pipistrelle activity increases in forest sites during 
postlactation. Staton and Poulton (2012) in contrary found P. pyg-
maeus activity during postlactation to be precluded to the forest 
canopy. Interspecific competition especially with the very similar 
P.  pipistrellus is one further factor possibly influencing habitat use 
and therefore also height use (Davidson-Watts et al., 2006; Roeleke 
et al., 2018).

For Myotis brandtii, higher activity levels were recorded during 
pregnancy and lactation, a seasonal pattern opposite to the other 
bat species considered. Activity peaks in gaps changed from the 
highest canopy layer during lactation to the ground layer during 
postlactation. Moreover, Brandt’s bats’ high activity levels in forest 
gaps during lactation decreased during postlactation. This decrease 
in gaps was accompanied by a slight activity increase in the forest 
interior. A seasonal preference for the forest interior was also found 
for NSF species. Myotis species are adapted to aerial hawking or 
gleaning in cluttered vegetation. Their activity shifts to the forest 
interior during postlactation could be in accordance with the argu-
ments of Plank et al. (2012) that lactating (and postlactating) females 
are more agile and better able to exploit cluttered habitats than 
pregnant females.

5  | CONCLUSIONS

The need to incorporate three-dimensional structural heterogene-
ity in habitat–animal diversity studies has been acknowledged for 
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different organisms (Carrasco et al., 2019; Heidrich et al., 2020; 
Langridge et al., 2019; Penone et al., 2019; Vodka & Cizek, 2013). 
Even though many studies have dealt with the role of forest structure 
on bat species or species groups, no clear image has yet emerged. 
Our study tries to complement the present picture with a focus on 
vertical (height in tree) and horizontal (forest interior vs. forest gaps) 
aspects of structural diversity. Species-dependent differences in 
height and structure use become evident. Our study clearly shows 
that for a thorough understanding of the way bats are using forests, 
it is essential (i) to include the upper forest strata in the analysis, (ii) 
to consider seasonal changes in microhabitat use, and (iii) to focus on 
bat species, rather than considering bat guilds.

Recent rapid changes in European forests due to climate 
warming-related stress and vitality loss will expose forest biota to 
enormous challenges and intensify the need for the adaptation of 
silvicultural concepts. In addition, wind turbines are increasingly 
built in Europe's forests, which will alter the space that can be ex-
ploited by forest bat communities. A thorough understanding of the 
interaction between bats, forest structure, and tree species compo-
sition is essential for predicting future changes in forest bat popu-
lations and bat communities and for advising related conservation 
efforts.
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